

Antenna challenges

Sven Petersson, Ericsson Research

Outline

- > What drives antenna system evolution
- > Spectrum issues
- > Propagation
- > How to handle increased demands
- > 5G Testbed
- > Take away

PACE OF CHANGE

Mobile Traffic growth

55%
Growth in mobile data traffic YoY

Wide variety of Use cases

- A wide range of use cases and a corresponding wide range of requirements. Examples are
 - -Mobile broadband, everywhere and everytime
 - Remote controlled machines
 - Smart transport infrastructure and vehicles
 - Meters, sensors (massive MTC)
- > Main focus of presentation is on the first three.

5G time plan

Antenna area and frequency

- > Path loss between isotropic (fixed gain) antennas: ~20 log₁₀(f)
 - As receive antenna area shrinks prop to f⁻²
- > How to counteract?
 - Put more receiver antennas same total area gives same received power irrespective of frequency
 - ...but signals need to be combined constructively → directivity
- What about transmit antenna?
 - Constructive beamforming over more antenna elements → directivity
- > Result for fixed area at both ends
 - $-20 \log_{10}(f)$ gain

N-LOS propagation

3

The high frequency impact on some propagation phenomena

 TX power density exposure limitations above 6-10 GHz

Propagation

- > Building penetration loss
 - Very much dependent on type of building, windows etc

Building penetration model:

A measurement campaign

Preliminary results!

Source: Jonas Medbo, Nima Seifi and Dennis Sundman, Ericsson Research

TX, RX Locations

Excess loss RX2

- Loss in excess of free space loss shown
- Negative loss in LOS region due to multipath gain
- > Frequency dependency of NLOS Loss
 - Slight in 2-15 GHz
 - Substantial in 15-60 GHz
- Reflected/scattered paths dominates over diffraction in NLOS

Distance along a straight line connecting the TX and the RX, not around the corner

Propagation

- > All-in-all
 - –A challenging task to combat the increased pathloss!

Measures at BS

- Large arrays with substantially many elements
 - Need for beam steering functionality!
 - Coherent radio paths
 - Need for many simultaneous beams
 - Multi-user MIMO
 - –HW integration
 - > Active elements to reduce losses
 - Data aggregation needed
 - > Bit shuffling potentially explodes!

Measures, UE

- Antenna elements gets more directive when frequency increases
 - Less angular coverage per element but still "omni-coverage" is required
 - Multiple elements with different characteristics

Measures, UE

- –UE beamforming on RX and TX
 - Utilize beam overlap and angular spread also for TX
 - Precoder choice must take power amplifier configuration into account

5G radio test bed

TAKE-away

> At BS:

- Large antenna arrays, in terms of antenna elements
- Massive beamforming
- High level of integration

> At UE:

- Many antennas
- Beamforming, both RX and TX

ERICSSON